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An r -adaptive moving mesh method is developed for the numerical solution of
an enthalpy formulation of two-dimensional heat conduction problems with a phase
change. The grid is obtained from a global mapping of the physical to the computa-
tional domain which is designed to cluster mesh points around the interface between
the two phases of the material. The enthalpy equation is discretised using a semi-
implicit Galerkin finite element method using linear basis functions. The moving
finite element method is applied to problems where the phase front is cusp shaped
and where the interface changes topology.c© 2001 Academic Press
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1. INTRODUCTION

In this paper we consider the development of a simple moving mesh method to solve
two-dimensional phase change problems. These arise in a number of important physical and
industrial contexts such as process engineering and geophysics. A convenient formulation
for the numerical solution of these problems is obtained by writing the governing heat
conduction equations in terms of the enthalpy, which is the sum of the sensible and latent
heats. The main advantage of this approach is that no explicit tracking of the phase front is
needed and that this information can be deduced from the numerical solution a posteriori. A
number of fixed grid methods have been proposed including [10, 19, 23, 27]. However, it is
well known that unphysical behaviour, such as spurious temperature plateaus and oscillatory
phase front movement, often occur using these methods [9, 25]. Alternatively, one can
attempt to track the moving phase front by deforming the underlying mesh. Normally, this
is done in such a way that element boundaries or mesh coordinate lines coincide with the
phase front [17, 24]. Improved accuracy is afforded by these methods at an increased cost.
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The main disadvantage of this approach however is the complication involved when the
phase front changes topology.

A number of researchers have found it possible to improve the solution process using
adaptive mesh techniques. Within a finite element context this is usually achieved using
the h-method of adaptation, where the mesh is locally refined or coarsened by adding
or deleting points [21, 22]. A less popular approach is to use the so-calledr -refinement
method where mesh points are moved throughout the domain while the connectivity of
the mesh is kept fixed. The main reason for the lack of popularity of this approach is the
difficulty involved in controlling the geometry of the mesh elements. If this is not done
with care then mesh tangling and elements with negative areas can easily arise. However,
the development of a robustr -adaptive method is attractive in that it intuitively should be
able to accurately resolve and follow important solution features. The coding involved in
anr -adaptive method is also simpler than that involved in anh-method, which requires a
considerably more complicated data structure.

The development ofr -adaptive methods has come from a number of different directions.
The moving finite element method of Miller and coworkers [18a] uses equations describing
the mesh movement derived from the minimisation of the residual of the finite element
approximation over an enlarged test space. Early versions of the method required care to
prevent mesh tangling although recent formulations have led to a more robust method [6].
Since the mesh equations are coupled to the equations for the physical PDE, the resulting
nonlinear systems are often very large. The fact that the mesh is often of secondary impor-
tance suggests that a more efficient decoupled procedure would be of interest. Recently,
Huang and Russell [15] and Caoet al. [4] have developed moving mesh methods to solve
time-dependent problems with steep solution fronts. The meshes are obtained from a map-
ping of a computational domain to the physical domain that minimises a functional related to
grid smoothness, orthogonality, and adaptivity. Similar minimisation techniques have been
used to generate adaptive grids for steady state problems [1, 2, 26]. For time-dependent
problems the computational mesh is obtained from a gradient flow equation which is driven
by a regularised form of the Euler–Lagrange equation describing the functional minimum.
The regularisation in time allows the mesh to smoothly track significant solution features.

The moving mesh method of Huang and Russell [15] has been used with a finite volume
approximation of the enthalpy equation by Lang [16]. A classical jump discontinuity is
assumed in the temperature–enthalpy relationship and the mesh is moved towards large
gradients in the enthalpy. Numerical experiments using this approach show that accurate
predictions of the phase front can only be achieved using high-order upwind techniques
to solve the physical PDE on the moving mesh. Upwinding is required since significant
convective terms are introduced to the governing equations when the mesh points are allowed
to move. At the phase change interface these convective terms dominate as no dissipation
is present in the classical formulation.

The main aim of this paper is to apply the moving mesh approach of Huang and Russell
[14] to the solution of a regularised enthalpy formulation of Stefan problems. The regular-
isation removes the need for any sophisticated upwinding and instead we apply a standard
Galerkin finite element discretisation. The regularisation also allows Newton’s method to
be used to efficiently solve the nonlinear algebraic systems that arise from the finite ele-
ment discretisation at each time step. Rather than adapt the grid towards large gradients in
the enthalpy, we instead consider a very simple adaptivity criterion based on the distance
from the numerical approximation of the phase front. This allows the mesh to be highly
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clustered where the material is changing phase and allows for the accurate determination
of its position. A similar approach was used successfully as part of the one-dimensional
moving mesh method of Mackenzie and Robertson [18].

The layout of this paper is as follows: in the next section we present a regularised enthalpy
formulation of the heat conduction equations. In Section 3 we discuss how the moving mesh
is generated along with specific adaptivity criteria for phase change problems. In Section 4
we describe a semi-implicit moving finite element discretisation of the enthalpy equation.
Finally, we apply the moving mesh method to four test cases in Section 5.

2. GOVERNING EQUATIONS

LetÄ ∈ IR2 be a bounded polygonal domain andT > 0. SetQ := Ä× (0, T). It is well
known that a substance of constant conductivity and unit density satisfies the heat equation

∂u

∂t
= ∂2θ

∂x2
+ ∂

2θ

∂y2
+ f (x, y, t), (2.1)

whereθ is the temperature,u(θ) is the enthalpy, andf (x, y, t) represents any body heating
or cooling sources. If a pure substance with constant specific heatsc1 andc2 undergoes a
change of phase at the temperatureθ = θm then the enthalpy may be written as

u(θ) =
{

c1(θ − θre f ), θ < θm

u(θ−m )+ λ+ c2(θ − θm), θm ≤ θ,
(2.2)

whereu(θ−m ) = limδ→0− u(θm + δ), θre f is any reference temperature belowθm, andλ is
the latent heat.

For the reasons outlined in the Introduction, various attempts have been made to regularise
the discontinuity inu(θ). We consider a continuously differentiable relationship suggested
by Egolf and Manz [12] which takes the form

u(θ) =


uref + c1(θ − θm)+ λ

2 exp

(
− |θ−θm|

ε−

)
, θ < θm

u(θm)+ λ
2 + c2(θ − θm)− λ

2 exp

(
− |θ−θm|

ε+

)
, θ ≥ θm,

(2.3)

whereε− andε+ determine the rates at which the temperature–enthalpy function asymptotes
to the linear relationship away from the phase change temperatureθm (see Fig. 1). Foru(θ)
to be continuously differentiable atθm we require that

c1− c2 = λ

2

(
1

ε+
− 1

ε−

)
. (2.4)

If ε = ε− + ε+ then we can define a modified Stefan number

St∗ = (c2− c1)ε

λ
. (2.5)
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FIG. 1. Regularised temperature–enthalpy function.

The simultaneous satisfaction of (2.4) and (2.5) gives rise to quadratic equations forε− and
ε+ which have physically relevant solutions given by

ε− = ε

2St∗
(1+ St∗ − √1+ St∗) (2.6)

and

ε+ = ε

2St∗
(St∗ − 1+√1+ St∗). (2.7)

In the limit c2→ c1 we haveε+ → ε− = ε/2.
The original motivation for this model was to describe mixtures and glassy substances

that have a continuous enthalpy transition from a pure solid to a pure liquid phase. However,
here we primarily use this model to regularise the temperature–enthalpy relationship. In
[20], Nochetto considered the effect of regularisation on theL2 error in the temperature
using a continuous piecewise linear function. If there are no mushy regions then the error
in the temperature isO(ε). Numerical experiments in one dimension [18] suggest that we
also introduce anO(ε) error due to the exponential-based regularisation. The main idea
using an adaptive moving mesh is to use smaller values ofε than would be possible using
a fixed mesh so that the regularisation error is much smaller than the discretisation error.

3. A MOVING MESH STRATEGY

To generate an adaptive mesh it is useful to regard the physical domainÄp as the image
of a computational (logical) domainÄc under the invertible maps

x = x(ξ, η), y = y(ξ, η) and ξ = ξ(x, y), η = η(x, y), (3.1)

wherex = (x, y) andξ = (ξ, η) are the physical and computational coordinates, respec-
tively. A mesh coveringÄp is obtained by applying the mapping given in (3.1) to a parti-
tioning ofÄc.
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A popular way to choose the coordinate transformation for steady problems is to require
that it minimises a functional of the form

F(ξ, η) = 1

2

∫
Äp

(∇ξT G−1∇ξ +∇ηT G−1∇η) dx dy, (3.2)

where∇ = (∂/∂x, ∂/∂y) andG(x, y) is a 2× 2 symmetric positive definite (SPD) matrix,
often referred to as a monitor matrix. The idea in adaptive mesh generation is to chooseG
to concentrate mesh points inÄp where the PDE is difficult to solve. However, constructing
a suitable monitor matrix is not an easy task. Given a 2× 2 SPD matrix it can be written in
terms of its eigendecomposition

G = λ1v1vT
1 + λ2v2vT

2 , (3.3)

wherev1 andv2 are normalised eigenvectors with corresponding eigenvaluesλ1 andλ2.
A study by Caoet al. [5] shows that if the meshÄc is uniformly distributed then the
adaptive mesh generated by minimisingF(ξ, η) is concentrated in regions whereλ1 andλ2

change rapidly. The analysis therefore allows a direct way of defining a monitor matrix by
specifying a suitable normalised directionv1 and settingv2 = v⊥1 . Thereafterλ1 is chosen
to have a suitable variation in the direction given byv1. This leaves the choice ofλ2 and
generally the smaller the ratioλ1/λ2 the more the grid adapts in the directionv1 and hence
two-dimensional effects become less pronounced.

A number of choices of monitor matrices are discussed in [5]. For example, one possibility
is to set

v1 = ∇u

|∇u| , v2 = v⊥1 , λ1 =
√

1+ |∇u2|,

which adapts the mesh to large gradient changes in the functionu(x). The eigenvalue
λ2 can be chosen as a function ofλ1. For example, ifλ1 = λ2 then G = λ1I and this
results in minimising Winslow’s functional [26]. Ifλ2 = 1/λ1 then G = M/

√
det(M),

whereM = I + (∇u)(∇u)T and we arrive at a method based on harmonic mappings [11].
If λ2 = 1 thenG = (I + (∇u)(∇u)T )1/2, which is a generalisation of the well-known arc-
length monitor function used in equidistribution schemes in one dimension.

For Stefan problems the main numerical difficulty occurs at the phase change interface
which can be detected by a large local gradient in the enthalpy. The moving mesh scheme of
Lang [16] uses the arc-length monitor matrix based on gradients of the enthalpy. However,
it is not uncommon to have regions of the domain that are far from the phase front where
the gradient of the enthalpy is significant enough to affect the clustering of the grid. For
example, problems with a large Stefan number are characterised by the fact that the latent
heat jump is small in relation to the temperature, and hence enthalpy, difference across the
domain. Numerical experiments in Section 5.1 show that this can lead to unnecessary mesh
clustering away from the phase change interface.

In an attempt to focus the mesh adaption towards the phase front we instead consider a
monitor matrix of Winslow-type with

G =
(

1+ µ1√
µ2

2|x− x∗|2+ 1

)
I . (3.4)



MOVING FEM FOR 2D STEFAN PROBLEMS 505

Herex∗ is the closest point tox on the numerical estimate of any phase front, andµ1 and
µ2 are user-chosen parameters. The one-dimensional equivalent of this monitor matrix has
been used successfully in the moving mesh method of Mackenzie and Robertson [18]. The
experience gained in one dimension shows that the parameterµ1 controls the minimum
mesh spacing whereasµ2 controls the rate at which mesh clustering occurs.

The calculation ofx∗ is achieved as follows. At timetn we have a piecewise linear
temperature field2(x, tn) obtained from a finite element discretisation which is described
in the next section. A piecewise linear representation of a phase interface is then obtained
from the ordered list of points{xc

i }Nc
i=1 such that2(xc

i ) = θm. These points are obtained
from a plotting routine used to display the numerical results. This routine can also easily
detect if more than one phase front is present. A smooth representation of an interfaceI n is
then obtained by an arc-length parameterised spline passing through the points{xc

i }Nc
i=1. This

curve is then partitioned by a set of points{xs
i }Ns

i=1 which is uniformly distributed alongI n

with xs
1 = xc

1 andxs
Ns
= xc

Nc
. Finally, we setx∗ = min1≤i≤Ns |xs

i − x|. In all the calculations
performed in Section 5 we have setNs = 100,µ1 = 100, andµ2 = 40.

Once a monitor matrix is decided upon, the computational mesh is then found by solving
the Euler–Lagrange equations

∇ · (G−1∇ξ) = 0 and ∇ · (G−1∇η) = 0. (3.5)

In practice we solve forx(ξ) as this defines the physical mesh used with the finite element
discretisation. Therefore, by interchanging the roles of the dependent and independent
variables we find that (3.5) takes the form

∂

∂ξ

(
xT
η Gxη
Jg

)
− ∂

∂η

(
xT
ξ Gxη
Jg

)
= 0 (3.6)

and

− ∂

∂ξ

(
xT
η Gxξ
Jg

)
+ ∂

∂η

(
xT
ξ Gxξ
Jg

)
= 0, (3.7)

whereJ = xξ yη − yξ xη andg = det(G).
For time-dependent problems we follow the approach of Huang and Russell [14] where

the coordinate mapping solves the gradient flow equations

∂ξ

∂t
= 1

τ
∇ · (G−1∇ξ). (3.8)

Hereτ > 0 is a temporal relaxation parameter that determines the rate at which the compu-
tational mesh attempts to minimise the functionalF . Writing the gradient flow equations
in terms of the mappingx(ξ) results in the coupled set of parabolic equations

∂x
∂t
= 1

τ

[∑
i, j

ai, j
∂2x

∂ξ i ∂ξ j
+
∑

i

bi
∂x
∂ξ i

]
, (3.9)

where

ai, j = ai · G−1a j , bi = −
∑

j

ai ∂G−1

∂ξ j
a j , (3.10)
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and the contravariant base vectorsai = ∇ξ i , i = 1, 2. The temporal discretisation of (3.9)
is achieved using a semi-implicit approach where

xn+1 = xn +1t
(
an

11x
n+1
ξξ + an

12x
n+1
ξη + an

22x
n+1
ηη + bn

1xn+1
ξ + bn

2xn+1
η

)
. (3.11)

The spatial discretisation of (3.11) is performed using second-order central finite differences
on anN × N uniform partition ofÄc = (0, 1)× (0, 1). The effect of evaluating the coeffi-
cientsai, j , andbi at timetn is to decouple the solution of the mesh from that of the physical
PDE. This has the advantage that different iterative techniques and different tolerances can
be used for each system. In particular, the discretisation of the moving mesh equations (3.9)
results in a linear algebraic system which we solve using an ILU-preconditioned BICGstab
routine with a tolerance of 10−8.

Dirichlet boundary conditions for the above system are obtained by solving a one-
dimensional moving mesh PDE. If0 ∈ ∂Ä and0c ∈ ∂Äc denote the physical and compu-
tational boundary segments with arc-lengthsl andlc respectively, then the mesh on0 is the
solution of

∂s

∂t
= 1

τ

(
M
∂s

∂ζ

)−2
∂

∂ζ

(
M
∂s

∂ζ

)
, ζ ∈ (0, lc), (3.12)

with s(0) = 0 and s(lc) = l . Here M is the one-dimensional projection of the two-
dimensional monitor function along the boundary.

4. A MOVING FINITE ELEMENT DISCRETISATION

We will assume that [0, T ] is partitioned by uniform time intervals1t = T/Nt such that

0= t0 < t1 < · · · < t Nt−1 < t Nt = T.

Using the procedure described in the previous section we will assume that attn+1 we have
a triangular meshSn+1 that has the same connectivity as the mesh at the previous time step
Sn. Therefore, each elementK (tn+1) of Sn+1 corresponds to a unique elementK (tn) of Sn.

We consider approximations of the form

U (x, y, t) =
∑

j

U j (t)φ j (x(t), y(t)), 2(x, y, t) =
∑

j

2 j (t)φ j (x(t), y(t)),

whereφ j (x(t), y(t)) is the usual piecewise linear basis function associated with the node
(xj (t), yj (t)), andUj (t) = u(2 j (t))whereu(θ) is given by (2.3). While spatial derivatives
of U and2 retain their usual form the temporal derivatives must take account of the motion
of the mesh. For example,

Ut = ∂

∂t

∑
j

U j (t)φ j (x(t), y(t)) =
∑

j

{U̇ jφ j +U j φ̇ j }

=
∑

j

{
U̇ jφ j +U j

(
Dφ j

Dt
− ∂φ j

∂x
ẋ j − ∂φ j

∂y
ẏj

)}
,



MOVING FEM FOR 2D STEFAN PROBLEMS 507

whereD/Dt is the derivative along the path given by(xj (t), yj (t)). Sinceφ j is constant
along this path we have

Ut =
∑

j

{U̇ jφ j −U j ẋ j (φ j )x −U j ẏj (φ j )y}. (4.1)

The additional terms appearing in (4.1) can be viewed as a correction for the convective
effects of the mesh motion.

Let J denote the set of indices of the mesh points andJ0 the subset ofJ excluding
those corresponding to Dirichlet boundary conditions. The finite element solution satisfies
the weak formulation

(Ut , φi )− (2xx +2yy, φi ) = ( f, φi ), ∀i ∈ J0,

where(·, ·) denotes theL2 inner product overÄ. Using integration by parts and the fact
thatφi = 0 on∂Ä we have

(Ut , φi )+ (2x, (φi )x)+ (2y, (φi )y) = ( f, φi ) ∀i ∈ J0. (4.2)

Substituting (4.1) into (4.2) we get∑
j

U̇ j (φ j , φi )−
∑

j

U j (ẋ j (φ j )xφi + ẏj (φ j )yφi )+
∑

j

2 j ((φ j )x(φi )x + (φ j )y(φi )y)

= ( f, φi ).

This is a system of ODEs of the form

MU̇ + BU − KΘ = f ,

whereU,Θ are the unknown nodal values of the enthalpy and temperature,M(t) is the mass
matrix, B(t) is a matrix associated with the movement of the mesh,K (t) is the stiffness
matrix, andf (t) is the load vector. The integrations involved in the inner products for the
matricesM , B, andK can all be calculated exactly. The load vectorf is calculated using
one-point Gaussian quadrature.

Analogous to the approach followed by Mackenzie and Robertson [18] in one dimension,
we use a semi-implicit discretisation

Mn+1Un+1−1t K n+1Θn+1 = Mn+1Un −1t (BnUn − f n+1). (4.3)

Note that the terms introduced by the mesh motion are treated explicitly whereas the mass
and stiffness matrix terms are treated implicitly. The main motivation behind this approach
is to try to obtain a set of nonlinear equations forΘn+1 that can be shown to possess a unique
solution. For the one-dimensional finite difference scheme considered by Mackenzie and
Robertson [18], an existence and uniqueness result followed from the fact that theUn+1

above was multiplied by a diagonal matrix and the one-dimensional equivalent of the
stiffness matrix was easily shown to be an M-matrix. For the two-dimensional case we could
diagonalize the mass matrix by mass lumping but the main difficulty comes in showing that
the stiffness matrixK n+1 is an M-matrix. Restrictions on the mesh that guarantee this
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property include the well-known weakly acute condition that all the angles occurring in
each triangular element are less thanπ/2 (see Ciarlet and Raviart [18]). Unfortunately,
this condition is far too restrictive when the mesh elements are allowed to deform in an
r -adaptive method. Therefore, at present we have no theoretical result to show that a unique
solution of (4.3) exists. However, in practice we find that we have no difficulty in finding
solutions using the Newton iteration(

Mn+1

(
∂U
∂Θ

)[n+1,s]

−1t K n+1

)(
Θ[n+1,s+1] −Θ[n+1,s]

) = r[n+1,s], (4.4)

where

r[n+1,s] = Mn+1
(
Un − U[n+1,s]

)+1t
(
K n+1Θ[n+1,s] − BnUn + f n+1).

The Newton iteration is well defined since the regularised temperature–enthalpy function is
continuously differentiable. The linear algebraic system (4.4) is solved iteratively using an
ILU-preconditioned BICGstab routine to a tolerance of 10−10. The outer Newton iteration
is performed until the tolerance is also below 10−10.

5. NUMERICAL RESULTS

5.1. Solidification in a Wedge

The first test case we consider is the solidification of a material in an infinite wedge.
For numerical purposes we use the domainÄ = (0, 1)2 andT = 0.1. The initial condition
θ(x, y, 0) = 0.3 is prescribed throughout the domain. Thereafter, the Dirichlet condition
θ = −1 is imposed onx = 0 andy = 0, and homogeneous Neumann conditions are im-
posed on the remaining two edges. The latent heat for this example isλ = 0.25. This test
case has also been used in the numerical work of [10] and [13].

A semi-analytical solution of this problem was proposed by Budhia and Kreith [3]. Their
solution is the linear superposition of solutions to two separate problems. The first is a
heat conduction problem, without a phase change, where the medium is initially above
the melting temperature and the temperature of the wedge boundaries is held at a con-
stant below the melting temperature fort ≥ 0. The second problem is that of a moving
heat source at the interface in a medium initially at the melting temperature. The mov-
ing source at the interface replaces the latent heat due to the phase change. The interface
position is given by the solution of a nonlinear integro-differential equation. To simplify
the solution process the authors assume that the interface is a one-parameter hyperbola
and the free parameter is chosen so that the integro-differential equation is satisfied at
one point on the interface. For this test case we have taken this point along the line
y = x.

Figure 2 shows the computed moving meshes withN = 30, Nt = 80, τ = 0.1, and
ε = 0.005. We can see clearly that the mesh is clustered around the phase change interface
and it follows its movement across the domain. Figure 2 also compares the computed
interface positions, which are denoted by dashed lines, with the interfaces computed using
a uniform fine grid withN = 180,Nt = 120, andε = 0.005. The accuracy of the interface
predictions is very good. Figures 3a and 3b show the computed temperature and enthalpy
along the top boundaryy = 1 which show excellent agreement with the fine grid solution.
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FIG. 2. Results for wedge solidification problem.
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FIG. 3. Results for wedge solidification problem.

Figure 3c shows that there is very good agreement between the computed front position
and the semi-analytic solution of [3] which is highly accurate along the liney = x. The
temperature history of the point (0.5, 0.5) is shown in Fig. 3d which is again predicted
accurately compared to the fine grid solution.

Figure 4 compares the grids obtained using the monitor matrices mentioned in Section 3.
The three approaches based on the gradient of the enthalpy all exhibit more grid clustering
within the solid phase than in the liquid phase. The reason for this is clear from Fig. 3b
where we see that there is a significant gradient of the enthalpy in the solid phase. However,
the variation is almost linear in the solid phase and there are no good approximation reasons
for the grid being more clustered here. By contrast, the grid obtained using the monitor
matrix (3.4) is symmetrically graded around the phase front.

5.2. An Oscillating Circle

The second test case we consider is the movement of an oscillating circular interface.
This problem was originally devised by Nochettoet al. [21] and has also been considered
as a test case for a level set method [7]. We haveÄ = (0, 5)× (−1, 4) andT = π/1.25.
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FIG. 4. Comparison of monitor functions for wedge solidification problem.

The forcing function is chosen such that the exact temperature is given by

θ(x, y, t) =
{

0.75(r 2− 1), r < 1,

(1.5− α̇(t) sinϕ)(r − 1), r ≥ 1,
(5.1)

where r = (x2+ (y− α(t))2)1/2, α(t) = 0.5+ sin(1.25t), and sinϕ = (y− α(t))/r .
Dirichlet boundary conditions are imposed on the sidesy = −1, y = 4, andx = 5, whereas
a homogeneous Neumann condition is prescribed onx = 0. The latent heat for this example
isλ = 1. The exact interface,I , is a unit circle with centre(0, α(t)) that moves up and down.

Figure 5 shows the computed moving meshes and interface predictions withN = 30,
Nt = 80, τ = 0.1, andε = 0.025. Again the numerically computed phase interface is
denoted by a dashed line. Clearly, the grid does a good job of following the movement
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FIG. 5. Grids and interface predictions for oscillating circle problem.

of the interface. The interpolation errors using an initial uniform and adapted mesh with
the same value ofN are shown in Fig. 6, where the darker shaded areas correspond to
larger errors. It is clear that the uniform mesh has significant errors around the position of
the initial interface and that these are reduced by a factor of three by adapting the initial
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FIG. 6. Interpolation errors for oscillating circle problem withN = 30: (a) fixed and (b) adapted initial meshes
and (c) distribution of errors. (d) shows the front error over time.

mesh. The evolution of the front error is also shown in Fig. 6 where we can see that the
improvement over the fixed mesh is maintained throughout the simulation. Table I compares
the performance of the moving mesh method with that of a fixed grid method. The notation

TABLE I

Errors for Moving and Fixed Grid Solutions of Oscillating Circle Problem

Moving mesh method Fixed mesh method

Nt × N E∞θ E∞I CPU Nt × N E∞θ E∞I CPU

40× 18 0.1040 0.0785 1.0 75× 32 0.103 0.0814 2.2
60× 25 0.0638 0.0404 2.9 100× 43 0.0798 0.0545 5.9
80× 30 0.0494 0.0312 5.8 150× 65 0.0487 0.0390 26.4
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TABLE II

Errors for h-adaptive and Fixed Grid Solutions of Oscillating Circle Problem

Using the Methods of Nochettoet al. [21]

h-adaptive method Fixed mesh method

Nt × J E∞θ E∞I N t × J E∞θ E∞I

40× 339 0.1070 0.0583 100× 1812 0.1249 0.0814
60× 592 0.0742 0.0501 150× 4107 0.0778 0.0545
80× 818 0.0517 0.0326 200× 7361 0.0631 0.0390

used in the table is

E∞θ = max
j,n

∣∣2n
j − θ

(
x j , t

n
)∣∣, and E∞I = max

n
(dist(I (n1t), I n)).

The CPU times have been normalised such that the coarsest moving grid method cor-
responds to one unit. To obtain the same level of accuracy it is clear that the moving
mesh method is considerably more efficient. Table II shows the results obtained using the
h-adaptive and fixed grid methods of Nochettoet al. [21]. Here J denotes the average
number of nodes used in the triangular meshes and these should be compared withN2 for
our moving mesh method. Although a strict comparison is difficult, in terms of equiva-
lent degrees of freedom it is clear that the moving mesh solutions in most cases are more
accurate than theh-adaptive solutions. As mentioned above, the moving mesh approach
does not require any complicated data structure and is considerably simpler to apply than
[21].

5.3. The Formation of a Cusp

For our third example, the initial condition is chosen such that the phase front forms
a cusp. The domainÄ = (−2, 4)× (0, 5) and T = 1. The initial temperature is given
by

θ0(x, y, 0) =


0.25(r 2− 1), r ≤ 1, y ≥ 2; 0.25(x2− 1), |x| < 1, y < 2;
(r − 1), r > 1, y ≥ 2; 5(|x| − 1), |x| > 1, y < 1;
(|x| − 1)(3− 2 cosπ(y− 2)), |x| > 1, 1≤ y < 2,

(5.2)

wherer = (x2+ (y− 2)2)1/2. A Dirichlet conditionθD = θ0(1+ t) is imposed onx = −2,
x = 4, y = 5, and a homogeneous Neumann condition is prescribed ony = 0. The exact
solution to this problem is unknown but calculations performed by [7] and [21] suggest that
the phase front forms a cusp at(0, 0) and eventually the solid phase disappears.

Figure 7 shows the computed grids and interface locations withN = 30, Nt = 80,τ =
0.1, andε = 0.025 which show excellent agreement with a uniform grid simulation with
N = 120 andNt = 160. Although the phase change interface forms a closed contour after
t = 0.65 we see that this does not pose any difficulty with the mesh movement. Thereafter,
the interface forms a cusp and again this potentially difficult interface shape is predicted
well. After the solid phase disappears the grid automatically relaxes back towards a uniform
mesh.
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FIG. 7. Grids and interface predictions for cusp problem.

5.4. An Oscillating Source

For our final example the domainÄ = (−1, 1)2 and T = 12. The initial temperature
θ(x, y, 0) = y/10, the boundary conditions areθ(x, y, t) = y/10 for the three sides
y > −1, and a homogeneous Neumann condition is specified on the bottom sidey = −1.
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FIG. 8. Grids and interface predictions for oscillating source problem.

The evolution of the solution is driven by an oscillating heat source

f (x, t) = cos(t/5)max(0, 3.125− 50|x− (−1/5,−1/2)|2)
+ sin(t/5)max(0, 3.125− 50|x− (−1/5, 1/2)|2). (5.3)
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The exact solution of this problem is unknown although it has been used as a test case by
Nochettoet al. [22]. For this example we use the parametersN = 40, Nt = 480,τ = 0.1,
ε = 0.005, and the results are compared with a fine grid solution withN = 120,Nt = 960,
andε = 0.005. Figure 8 shows the development of two liquid phases that eventually merge.
We note that att = 1.2 the moving mesh has no difficulty adapting towards the two phase
change interfaces. Furthermore, the mesh movement algorithm effectively deals with the
change in topology as the two interfaces merge. The computed interface positions are very
similar to those predicted using the far more complexh-adaptive method of [22].

6. CONCLUSIONS

In this paper we have presented a moving mesh finite element method for the enthalpy
formulation of phase change problems. The algorithm is able to efficiently and accurately
predict the evolution of the temperature field and the position of the phase front, even
when it develops cusps or undergoes topological changes. The method is relatively simple
and delivers comparable accuracy to more complicatedh-adaptive schemes. Ideally, it
makes sense to combine the two approaches and this is an area for future development. In
addition, we believe the method is well suited to be applied to more sophisticated models
of solidification, such as phase-field models, which account for important physical effects
such as supercooling and surface tension.
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